当前位置: 首页> 学位论文 >详情
原文传递 基于Matlab的路面裂缝识别算法研究
论文题名: 基于Matlab的路面裂缝识别算法研究
关键词: 路面裂缝;去噪处理;图像增强;边缘连接;特征提取;Matlab软件
摘要: 高速公路路面病害养护和管理的重要部分就是路面裂缝的检测。近年来,路面裂缝自动检测技术已得到了广泛应用,而由于路面裂缝图像的复杂性,检测算法直接影响着检测结果的精确度。因此,本文将重点放在路面裂缝病害的检测上,为了提高检测的精度,分别从裂缝图像的去噪、图像的增强、图像的分割以及检测后路面裂缝图像的特征提取方面进行深入研究。
  在路面裂缝图像中,由于裂缝信息与背景对比度偏低,难以将裂缝直接检测到。对于图像的预处理,首先对图像进行灰度校正,再对校正之后的图像滤波,本文提出了一种改进的中值滤波方法,对图像进行去噪,之后用基于模糊理论的图像增强原理对图像做进一步增强,有效提高了路面裂缝图像的对比度。
  针对路面裂缝图像分割,本文分别用了阈值分割和基于形态学多尺度的思想,对于形状规则的裂缝采用的是阈值分割,对于裂缝形状不规则的图像,本文设计了一种多结构元素的抗噪型边缘检测算子,且依据不同形状的结构元素对裂缝边缘填充的几率不同,确定了自适应权重,使得算子检测到了各种类型的裂缝边缘,有效地提高了检测的精度。
  对于经过分割后的路面裂缝图像中存在噪声和裂缝断裂的问题,本文对于断裂较窄的图像用形态学中的闭运算和开运算去处理,对于断裂较宽的图像,提出了一种基于生长的断裂裂缝块的连接方法。提高了连接的效率和准确率,使整个检测结果清晰完整。最终,从识别结果图中提取裂缝信息。根据得到的识别结果图,设定一系列判定条件,提取出裂缝的连通域,对裂缝的类型进行判断,最后计算出网状裂缝的面积及线性裂缝的长宽信息。
作者: 任炳兰
专业: 智能交通与信息系统工程
导师: 孙朝云
授予学位: 硕士
授予学位单位: 长安大学
学位年度: 2014
正文语种: 中文
检索历史
应用推荐