Improving Connectivity: Innovative Fiber-Reinforced Polymer Structures for Wildlife, Bicyclists, and/or Pedestrians
项目名称: Improving Connectivity: Innovative Fiber-Reinforced Polymer Structures for Wildlife, Bicyclists, and/or Pedestrians
摘要: Ecologists and engineers are constantly exploring new methods and adapting existing techniques to improve mitigation measures that increase motorist safety and wildlife species conservation. Crossing structures, combined with fences, are some of the most highly effective mitigation measures that are employed around the world due to their ability to not only reduce wildlife-vehicle collisions (WVCs) with large animals and increase motorist safety, but they also provide an additional benefit that other measures don’t, they help maintain habitat connectivity across transportation networks for many types and sizes of wildlife. Published research on bridge designs and materials for wildlife crossings is limited and suggests relatively little innovation has occurred. Given wildlife crossing structures are a critical contribution to highway mitigation strategies for reducing WVCs while also providing for habitat connectivity, species movement and migrations, the need for new, resourceful, and innovative techniques is warranted. This research explores the promising application of fiber-reinforced polymers (FRPs) to wildlife crossing structures. If FRP structural designs can meet all bridge specifications set by transportation agencies and prove to have less expensive life cycles, they will provide a new approach that is more efficient, more quickly deployed, lasts longer, requires less maintenance and is ultimately more adaptable than traditional materials. This project explores what is know about FRP bridge structures and materials that can be adapted for use in crossing structures over highways for wildlife and, by extension, for bicyclists and pedestrians as well.
状态: Active
资助组织: Office of the Assistant Secretary for Research and Technology
执行机构: Western Transportation Institute
开始时间: 20190701
预计完成日期: 20210630
主题领域: Bridges and other structures;Environment;Highways;Materials;Pedestrians and Bicyclists;Safety and Human Factors
相关文献
检索历史
应用推荐