题名: |
Numerical Simulation of Solitary-Wave Propagation over a Steady Current |
其他题名: |
Barth,T.J.(1992)."Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-Stokes equations."AGARD Rep.787:Special course on unstructured grid methods for advection dominated flows,Advisory Group for Aerospace Research and Development(AGARD),Neuilly-sur-Seine,France. |
正文语种: |
英文 |
作者: |
Jisheng Zhang |
关键词: |
Wave-current interaction;Solitary wave;Reynolds-averaged Navier Stokes (RANS) model;Numerical simulation |
摘要: |
A two-dimensional numerical model is developed to study the propagation of a solitary wave in the presence of a steady current flow. The numerical model is based on the Reynolds-averaged Navier-Stokes (RANS) equations with a k-ɛ turbulence closure scheme and an internal wave-maker method. To capture the air-water interface, the volume of fluid (VOF) method is used in the numerical simulation. The current flow is initialized by imposing a steady inlet velocity on one computational domain end and a constant pressure outlet on the other end. The desired wave is generated by an internal wave maker. The propagation of a solitary wave traveling with a following/opposing current is simulated. The effects of the current velocity on the solitary-wave motion are investigated. The results show that the solitary wave has a smaller wave height, larger wave width, and higher traveling speed after interacting with a following current. Contrariwise, the solitary wave becomes higher with a smaller wave width and lower traveling speed with an opposing current. The regression equations for predicting the wave height, wave width, and traveling speed of the resulting solitary wave are for practical engineering applications. The impacts of the current flow on the induced velocity and the turbulent kinetic energy (TKE) of a solitary wave are also investigated. |
出版年: |
2015 |
论文唯一标识: |
P-108Y2015V141N03005 |
英文栏目名称: |
Technical Papers |
doi: |
10.1061/(ASCE)WW.1943-5460.0000281 |
期刊名称: |
Journal of Waterway, Port, Coastal, and Ocean Engineering |
拼音刊名(出版物代码): |
P-108 |
卷: |
141 |
期: |
03 |
页码: |
55-65 |