当前位置: 首页> 学位论文 >详情
原文传递 基于深度神经网络的铁路异物检测算法
论文题名: 基于深度神经网络的铁路异物检测算法
关键词: 高速铁路;线路检测;机器学习;贪婪算法
摘要: 对入侵到铁路限界内的异物进行准确地检测,一直以来都是轨道交通领域的一个重要课题,在实践和科研领域都具有持久的研究热度。尤其是随着高速铁路技术的不断深入,我国高速铁路建设的不断发展,设计一种识别性能优异、可靠性高、能够应用于实际铁路运营的检测算法,更是具有重要意义。目前而言,传统基于视频技术的异物检测算法依赖于背景帧差方式,易受场景和光线变化的干扰,错检率较高,无法满足铁路现场长期在线检测的需求。而深度神经网络作为一种近年来新兴的机器学习算法,具有较传统人工神经网络更复杂的网络结构、更优秀的特征提取方式和网络训练方式,在图像领域表现出了强大的处理能力。
  本文以铁路线路是否被列车占用为研究任务,设计了基于深度神经网络的检测算法,并以实际铁路场景图像作为网络样本,研究了深度神经网络算法的优化方式以及算法的泛化性能。首先,在铁路现场采集的视频的基础上,用传统检测方式设计了自动分类算法,结合人工校核构建出了数量丰富且准确分类的图像数据库;随后,设计五层的深度信念网络,实现了算法对于图像的识别功能,并通过单相机的图像研究了算法对于铁路场景图像的结构及参数优化方法,较好地实现了预期的识别任务;最后,使用不同相机的图像,研究测试了算法的泛化性能,通过调整训练样本及网络结构的方式,验证了算法具有较好的泛化性能。通过使用深度神经网络的方式,改变了原先固有的异物检测模式,代之以场景图像直接分类判断,规避了检测提取方法的种种误差和不足,在对实际场景视频的测试中取得了良好的效果,表明算法具有较好的识别能力和实用意义。
作者: 刘文祺
专业: 控制科学与工程
导师: 朱力强
授予学位: 硕士
授予学位单位: 北京交通大学
学位年度: 2016
正文语种: 中文
检索历史
应用推荐