当前位置: 首页> 国外交通期刊数据库 >详情
原文传递 Load Transfer and Collapse Resistance of RC Flat Plates under Interior Column Removal Scenario
题名: Load Transfer and Collapse Resistance of RC Flat Plates under Interior Column Removal Scenario
其他题名: ACI(American Concrete Institute).2014.Building code requirements for structural concrete and commentary.ACI 318M-14.Farminton Hills,MI:ACI.
正文语种: 英文
作者: Huizhong Xue
关键词: Reinforced concrete (RC) flat plates;Progressive collapse;Interior column removal;Punching shear
摘要: Reinforced concrete (RC) flat-plate structures are vulnerable to punching shear failure at their slab-column connections, potentially leading to a catastrophic progressive collapse. In practice, the slab-column connection above an interior column, removed due to abnormal loads, may be subjected to a concentrated downward force because of the absence of the supporting column and further being pushed as a result of different live load intensities on individual stories. This force is different from the full design load that the column withstands in normal situations and, combined with the gravity load acting on the slab, may cause punching shear failure at the interior slab-column connection. This will further trigger failure propagation to the surrounding slab-column connections. This paper presents the experimental tests performed on two identical large-scale 2 × 2-bay RC flat-plate specimens under an interior column removal scenario. A 5-kPa uniformly distributed load was applied first to the slab followed by an incremental concentrated force imposed on the slab-column connection above the removed interior column. The complete collapse-resistant behavior and load redistribution pattern of the specimens were investigated and are reported herein. Results show that more than 90% of the applied concentrated force is solely distributed to the four nearest adjacent columns. Three load-carrying mechanism phases, in the form of flexural, tensile membrane, and a combination of one-way catenary and dowel actions can be distinguished in resisting the applied concentrated load.
出版年: 2018
论文唯一标识: P-26Y2018V144N07022
英文栏目名称: TECHNICAL PAPERS
doi: 10.1061/(ASCE)ST.1943-541X.0002090
期刊名称: Journal of Structural Engineering
拼音刊名(出版物代码): P-26
卷: 144
期: 07
页码: 293-307
检索历史
应用推荐