当前位置: 首页> 国外交通期刊数据库 >详情
原文传递 Prediction of Time to Corrosion-Induced Concrete Cracking Based on Fracture Mechanics Criteria
题名: Prediction of Time to Corrosion-Induced Concrete Cracking Based on Fracture Mechanics Criteria
正文语种: 英文
作者: Ian Lau1; Chun-Qing Li2; Guoyang Fu3
作者单位: 1Ph.D. Student, School of Engineering, Royal Melbourne Institute of Technology Univ., Melbourne, VIC 3001, Australia. 2Professor, School of Engineering, Royal Melbourne Institute of Technology Univ., Melbourne, VIC 3001, Australia (corresponding author). 3Research Fellow, Dept. of Civil Engineering, Royal Melbourne Institute of Technology Univ., Melbourne, VIC 3001, Australia.
关键词: Corrosion; Concrete cracking; Stress intensity; Stochastic process; First-passage probability
摘要: A review of the literature shows that current research on corrosion-affected reinforced concrete structures focuses more on strength deterioration than on serviceability deterioration. For corrosion-induced concrete cracking, little research has been based on fracture mechanics criteria and stochastic processes. In this paper, a new methodology is proposed for predicting the time to corrosion-induced concrete cracking based on fracture mechanics criteria. A stochastic model with a nonstationary lognormal process was developed for corrosion-induced concrete cracking, and the first-passage probability method was employed to predict the time-dependent probability of its occurrence. The merit of using a nonstationary lognormal process for corrosion-induced concrete cracking is that it eliminates unrealistic negative values of the normal distribution for inherently positive values of physical parameters. It was found that the diameter of reinforcing steel D, corrosion rate icorr, and effective modulus of elasticity Eef have the most influence on the probability of corrosion-induced concrete cracking. The methodology presented in the paper can serve as a tool for structural engineers and asset managers in making decisions with regard to the serviceability of corrosion-affected concrete structures.
出版年: 2019
期刊名称: Journal of Structural Engineering
卷: 145
期: 8
页码: 1-8
检索历史
应用推荐