作者单位: |
Department of Civil, Structural and Environmental Engineering, The State University of New York, Buffalo, NY, USA; Department of Industrial and Systems Engineering, The State University of New York, Buffalo, NY, USA; Serco Inc., Reston, VA, USA; Northern Region Operations, Virginia Department of Transportation, Fairfax, VA, USA |
摘要: |
Travel time reliability is very critical for emergency vehicle (EV) service and operation. The travel time characteristics of EVs are quite different from those of ordinary vehicles (OVs). Although EVs own highest road privilege, they may still experience unexpected delay that results in massive loss to the society. In this study, we employ the generalized extreme value (GEV) theory to measure extremely prolonged travel time and analyze the potential influential factors. First, among three GEV distributions, Weibull distributions are found to be the best distribution model according to several goodness-of-fit tests; a new reliability index is derived to measure travel time reliability. Numerical examples demonstrate the advantages of GEV-based reliability index over variance and percentile value in the applications of EV. This index will be of great practicability in the EV operation performance and reliable route choices. Second, we further investigate the potentially influential factors of EV travel time reliability. Results show that link length and left-turn traffic volume may have an adverse impact on the link reliability while more left-turn lanes may increase the travel time reliability. The influential factor study will help us understand the causes of the EV travel time delay and the differences of travel time reliability between OVs and EVs. |