题名: |
Methodology for Development of Physics-Based Tsunami Fragilities |
正文语种: |
英文 |
作者: |
Navid Attary, A.M.ASCE; John W. van de Lindt, F.ASCE; Vipin U. Unnikrishnan;Andre R. Barbosa, A.M.ASCE;Daniel T. Cox, A.M.ASCE |
作者单位: |
Colorado State Univ;Oregon State Univ |
关键词: |
Tsunami fragility; Momentum flux; Moment of momentum flux; Physics-based fragility; Tsunami intensity measure; Monte Carlo simulation; Structural safety and reliability. |
摘要: |
Tsunamis affect coastal regions around the world, resulting in fatalities and catastrophic damage to communities. Fragility functions form the basis of most risk and resilience analyses at the individual structure level, thereby allowing physical infrastructure components to be in eluded at the community level. For tsunami loading, the vast majority of fragilities that have been developed are based on postevent observations in the field, which are usually specific to the site of the event. In this paper, a methodology to generate physics-based tsunami fragility functions is proposed, using vector intensity measures, such as tsunami flow depth and flow velocity and several combinations thereof. The proposed methodology relies on Monte Carlo Simulation for consideration of material uncertainties and includes epistemic uncertainties in the tsunami force calculation. The ability of different tsunami intensity measures (flow depth, flow velocity, and momentum flux), which are common in the literature, to predict the response of structures are investigated, and a new intensity measure (kinematic moment of momentum flux) that represents overturning moment of a structure for tsunami fragility curves is proposed. The methodology is illustrated using an application example consisting of a steel moment frame structure and fragility functions based on the kinematic moment of momentum flux are presented and shown to be a better predictor with less epistemic uncertainty. DOI: 10.1061/(ASCE) ST.1943-541X.0001715. © 2016 American Society of Civil Engineers. |
出版日期: |
2017.05 |
出版年: |
2017 |
期刊名称: |
Journal of Structural Engineering |
卷: |
Vol.143 |
期: |
NO.05 |
页码: |
04016223 |