摘要: |
企业以质量为本,在汽车生产过程中会用到大量的外协件,其质量对于整车质量有至关重要的影响,如果能够准确预测外协零件质量,对企业提高整车质量意义重大。本文依据上海某汽车公司的实际情况,分析和研究了数据挖掘和时间序列分析在外协件质量控制方面的一些应用。本文针对企业外协件质量控制存在的问题,提出了利用数据挖掘结合时间序列分析的方法对外协件的历史检测数据进行分析、预测。首先,本文引入了数据挖掘和时间序列的概念,介绍了数据挖掘的研究方法和算法,利用分类、关联和聚类算法对历史数据进行处理,建立了外协件质量检测数据仓库;其次,系统的建模引入了时间序列的方法,利用生产实际的外协件质量检测历史数据,建立了应用质量控制的AR模型;最后,我们使用Java程序结合SQL Server 2000数据库,开发了外协件质量信息流管理软件,完成了上海华普外协件质量信息流软件管理平台,基于实际检测的样本数据进行系统建模、分析以及预测零件质量情况。本文的实际内容来源于实际生产,然后又将实际生产和时间序列理论结合在一起,对产生的时间序列进行了合理的分析。本论文的理论通过软件得以实现,并在实际生产中的使用,提高了检验效率,满 |