摘要: |
To evaluate weigh-in-motion (WIM) sensors and techniques for measuring traffic loads, a WIM system standard is introduced. Available WIM sensors in the market such as load cell, bending plate, and piezoelectric sensor, etc. are reviewed. Then a remote WIM system is designed and installed to conduct the evaluation of sensors. The designed system can be accessed remotely and is capable of conducting data acquisition for multiple sensors. With the acquired field data, a pavement deflection load determination algorithm is developed, and the results are compared with the integration algorithm. The analysis shows that pavement deflection can be used for a vehicle's weight measurement. Furthermore, the result is helpful for the nondestructive WIM system design. The Fiber Bragg Grating (FBG) sensor is also evaluated in this research. Compared to piezoelectric sensors, FBG sensors offer a simpler and more explicit load determination algorithm, and the life span of the sensors is longer. However, it is necessary to build a sensor holder for the FBG sensor. In addition to the evaluation of regular WIM sensors, an innovative WIM sensor was developed in this project. It is an active sensor based on the perturbation theory of microwave resonant cavity. The microwave signal generated by a circuit is coupled into the sensor, and the returned signal is measured to determine the load applied to the sensor. The lab test results show the microwave WIM sensor can weigh the load to very high accuracy. / NOTE:Technical rept. (Sept. 2003-Aug. 2005). |