关键词: |
aircraft fires, fire resistant foam, chemical properties, aviation fuels, crashes, rescue, fire safety, technolyg assessment |
摘要: |
Technological advances and firefighting research have helped improve new firefighting systems on large and small aircraft rescue and firefighting vehicles at airports. One such technology is a quad-agent firefighting system that has the capability to discharge four firefighting agents, i.e., water, foam, dry chemical (potassium bicarbonate (PK)), and clean agent (Halotron), individually or simultaneously. Water by itself is typically not used for aviation fuel firefighting. The water in the quad-agent system is used to mix with foam concentrate solution to create firefighting foam. The quad-agent firefighting system attempts to advance the concept of multiple agents simultaneously applied to the fire to affect a more rapid extinguishment of pool and flowing fuel fires, and maximize fire fighter safety by extending the distance needed to properly apply agent to the fire using its pulse delivery technology. This research evaluated the capabilities and effectiveness of a quad-agent firefighting system. The research was done in terms of using different combinations of firefighting agents from the same discharge point during an agent flow duration test, agent discharge distance test, engine nacelle flowing fuel fires, and large-scale pool fires. The results showed that during the agent flow duration tests, using aqueous film forming foam (AFFF) only, the quad-agent system produced an average flow duration of 155 seconds in compressed air foam (CAF) mode. / NOTE: Technical note. / Supplementary Notes: Sponsored by Federal Aviation Administration, Washington, DC. Aviation Research and Development. / Availability Note: Order this product from NTIS by: phone at 1-800-553-NTIS (U.S. customers); (703)605-6000 (other countries); fax at (703)605-6900; and email at orders@ntis.gov. NTIS is located at 5285 Port Royal Road, Springfield, VA, 22161, USA. |