摘要: |
In the future, it may be possible to employ large numbers of autonomous marine vehicles to perform tedious and dangerous tasks, such as minesweeping. Hypothetically, groups of vehicles may leverage their numbers by cooperating. A fundamental form of cooperation is to perform tasks while maintaining a geometric formation. The formation behavior can then enable other cooperative behaviors. In this paper, we describe a leader-follower formation- flying control algorithm. This algorithm can be applied to one-, two-, and three-dimensional formations, and contains a degree of built-in robustness. Simulations and experiments are described that characterize the performance of the formation control algorithm. The experiments utilized surface craft that were equipped with an acoustic navigation and communication system, representative of the technologies that constrain the operation of underwater autonomous vehicles. The simulations likewise included the discrete-time nature of the communication and navigation. / Availability Note: Product reproduced from digital image. Order this product from NTIS by: phone at 1-800-553-NTIS (U.S. customers); (703)605-6000 (other countries); fax at (703)605-6900; and email at orders@ntis.gov. NTIS is located at 5285 Port Royal Road, Springfield, VA, 22161, USA. |