关键词: |
development, assessment, liquefaction, dynamic properties, confining pressure, literature reviews, camera calibration, visualization, recommendations |
摘要: |
The research combines Particle Image Velocimetry (PIV) and transparent soil to investigate the dynamic rigid block and soil interaction. In order to get a low viscosity pore fluid for the transparent soil, 12 different types of chemical solvents were tested and the two best-matching pore fluids were identified. Transparent soil was adopted in the research as a substitute for natural sand. To examine the dynamic properties of transparent soil, a series of resonant column tests were carried out on dry silica gel under different confining pressures. The test results showed that transparent soil has a similar dynamic behavior as natural soil under low confining pressure. Hence, transparent soil can be used as an effective substitute for natural soil in the shake table test, in which the confining pressure is usually lower than 400 kPa. A neural network-based camera calibration algorithm was developed for the PIV technique. Its application was illustrated through a case study of a rectangular strip footing by modifying the PatPIV code. The neural network camera calibration model was also compared with the linear model and second-order polynomial model. The comparison proved that the neural network camera calibration model is the most effective method. / Supplementary Notes: Sponsored by Department of Transportation, Washington, DC. University Transportation Centers Program. / Availability Note: Order this product from NTIS by: phone at 1-800-553-NTIS (U.S. customers); (703)605-6000 (other countries); fax at (703)605-6900; and email at orders@ntis.gov. NTIS is located at 5285 Port Royal Road, Springfield, VA, 22161, USA. |