摘要: |
针对弱GNSS环境下组合导航(INS/GNSS)系统存在的定位偏差问题,提出一种基于经验模态分解和长短期记忆网络的车辆位置预测算法。首先,针对训练数据中噪声较大的惯导数据,提出一种融合经验模态分解与离散小波变换的降噪算法。该算法基于噪声能量估计和各阶本征模态函数的功率谱密度函数,提出一种确定混合模态函数阶数上下界的方法,并采用离散小波变换硬阈值法对混合模态函数进行滤波处理,最终利用经过处理的各阶模态函数重构原始数据以达到降噪目的。训练数据经过预处理后,采用改进的堆叠式长短期记忆网络离线训练位置预测模型,利用该训练模型可在线实时进行位置预测。针对车辆定位序贯数据预测,提出一种局部数据降噪方法,该方法利用一定长度时间窗口的历史数据,通过线性最小二乘给出当下时刻数据的预估值,并与实际量测值进行滑动平均滤波,优化位置预测的结果。在封闭场地模拟隧道环境下,对长短期记忆网络输入端进行局部数据降噪与不进行降噪处理比较,经度和纬度的归一化均方误差分别下降了13.34%和9.38%,经度和纬度的归一化平均绝对误差分别下降了8.64%和5.41%;在复杂城市交通环境下,检验提出的方法,经度和纬度的归一化均方误差分别下降了6.51%和5.66%,经度和纬度的归一化平均绝对误差分别下降了5.70%和8.23%。试验结果表明,在弱GNSS信号环境下,提出的车辆位置预测方法有效提高了车辆定位精度和稳定性。 |