摘要: |
近年,基于网联车辆轨迹数据的交通管控与服务研究方兴未艾。其中,信号控制交叉ロ排队长度估计备受关注。然而,在低渗透率条件下,单个周期内轨迹稀少且提供的交通信息十分有限。现有研究仅以当前周期内网联车辆轨迹数据为输入,难以获得准确且可靠的周期级排队长度估计结果。因此,融合利用历史网联车辆轨迹数据提供的车辆到达和停车位置信息以及当前周期内实时观测的网联车辆排队信息,提出一种基于最大后验概率的周期最大排队长度估计方法。首先,依据历史轨迹数据的停车位置信息,估计排队长度的先验分布;其次,依据历史轨迹数据的车辆到达信息,估计周期内车辆的历史到达分布,并结合周期内最后1辆排队网联车辆的到达时刻与停车位置,构建排队长度似然函数;最后,基于贝叶斯理论,结合前述先验分布与似然函数,推导周期排队长度的后验分布,并采用最大后验概率方法实现周期最大排队长度的估计。仿真结果表明:所提方法在不同饱和度和渗透率条件下,均优于现有的方法;即使在车辆轨迹数不超过1veh周期-1的低渗透率条件下,所提方法的平均绝对估计误差也不超过2veh•周期实证结果表明:在渗透率仅为8.96%的条件下,所提方法的平均绝对误差为2.12veh•周期,平均相对估计误差为12.4%,同样优于现有同类方法。 |