摘要: |
Ultra-high performance concrete (UHPC) is increasingly used in novel accelerated bridge construction (ABC) designs including bridge deck joints and concrete substructure applications. While it is generally accepted that bulk UHPC can provide enhanced corrosion durability due to its low permeability, many ABC applications of the material incorporate designs where reinforcing steel is embedded in both conventional concrete and UHPC. In these conditions, the dissimilar concrete environments may lead to enhanced corrosion conditions. Among the various material effects on long-term corrosion durability of reinforced concrete, material properties and characteristics such as electrical resistivity, internal moisture availability, oxygen diffusivity, and chloride diffusivity can enhance or mitigate corrosion development. Material considerations of the design such as physical bond and moisture and chemical transport at cold joints of conventional and UHPC can be important. Furthermore, electro-chemical considerations such as macro-cell coupling of steel electrodes, cathodic oxygen reduction efficiency of steel, and critical chloride threshold concentrations for steel should be addressed for ABC designs incorporating conventional and UHPC concretes. |