原文传递 GPS Ocean Reflection Experiment on Spartan 251
题名: GPS Ocean Reflection Experiment on Spartan 251
作者: Garrison, James L; Russo, Angela; Mickler, Dave; Armatys, Michael; Ferebee, Melvin J.
关键词: reflection;sparta;ocean;measurement;signal;architecture;visibility;waveform;illumina;broadcast
摘要: It has recently been demonstrated that the GPS signal which has reflected from the ocean surface contains useful geophysical data from which the sea surface wind speed and other parameters can be extracted. This can be used for remote sensing, similar to present day use of radar altimeters or scatterometers, but with significantly smaller instrumentation because of the utilization of the existing GPS broadcast signal for illumination. Several campaigns of aircraft experimentation have been completed demonstrating this technique and reflected GPS data has been reliably collected from 25 km altitude on a balloon. However, there has not yet been a demonstration that the reflected GPS signal can be detected from orbit with sufficient signal to noise ratio (SNR) to make useful remote sensing measurements. A technology demonstration experiment was planned for a Space Shuttle flight in the late 2000 using the Spartan 251 recoverable carrier. This experiment would also have been the first flight validation of the PiVoT GPS receiver developed in house at the Goddard Space Flight Center. The "open-architecture" design of this receiver would allow the software modifications to be made which control code-correlator spacing to map out the shape of the reflected signal waveform, which is the most basic data product generated by this instrumentation. A moderate gain left-hand circularly polarized antenna, constructed from an array of off-the-shelf hemispherical antennas was to be used to give approximately 3 to 6 dB of additional gain. Preliminary SNR predictions have been done indicating that this antenna would offer sufficient gain to record waveform measurements. A system level description of the experiment instrumentation, including the receiver, antenna and data storage and retrieval will be given. The visibility of GPS reflections over the mission duration of several hours will be studied, including the effects of the limited beamwidth of the antenna. Spartan 251 has now been postponed with the earliest opportunity in the year 2002. The results of this study however, have been 2 used to further the define the requirements and expected performance of reflected GPS receivers in orbit. Several other space flight opportunities are being considered based upon this new information.
报告类型: 科技报告
检索历史
应用推荐