摘要: |
During the past several years, an interest has grown in using commercial telecommunications techniques to supply Telemetry and Command (T&C) services. Recently, the National Aeronautics and Space Administration (NASA) Space Operations Management Office (SOMO) has outlined plans to utilize satellite-based telecommunications services to support space operations in space missions over the next several decades. NASA currently obtains the bulk of its telecommunications services for earth-orbiting satellites via the existing government-owned and controlled Space Network (SN) system. This system consists of the constellation of Tracking and Data Relay Satellites (TDRS) in Geostationary Earth Orbit (GEO) and the associated ground terminals and communications intrastructure. This system is valuable and effective for scientific satellites costing over one million dollars. However, for smaller satellites, this system becomes problematic due to the cost of transponders and support infrastructure. The nominal transponders for using the TDRS cannot be obtained for a cost in dollars, and size, weight, or power that the 3 Corner Satellite project can afford. For these types of nanosatellite missions, alternatives that fit the mission cost and satellite profiles are needed. In particular, low-cost access using existing commercial infrastructure would be useful to mission planners. In particular, the ability to obtain low data rate T&C services would be especially valuable. The nanosatellites generally have low T&C requirements and therefore would benefit from using commercial services that could operate in the 2400 bps - 9600 bps range, especially if contact times longer than the 5 - 10 minute ground station passes could be found. |