原文传递 On Fast Post-Processing of Global Positioning System Simulator Truth Data and Receiver Measurements and Solutions Data
题名: On Fast Post-Processing of Global Positioning System Simulator Truth Data and Receiver Measurements and Solutions Data
作者: Kizhner, Semion
关键词: measurement;processing;simulator;solution;global;fast;data;post;itio;system
摘要: Post-processing of data, related to a GPS receiver test in a GPS simulator and test facility, is an important step towards qualifying a receiver for space flight. Although the GPS simulator provides all the parameters needed to analyze a simulation, as well as excellent analysis tools on the simulator workstation, post-processing is not a GPS simulator or receiver function alone, and it must be planned as a separate pre-flight test program requirement. A GPS simulator is a critical resource, and it is desirable to move off the pertinent test data from the simulator as soon as a test is completed. The receiver and simulator databases are used to extract the test data files for postprocessing. These files are then usually moved from the simulator and receiver systems to a personal computer (PC) platform, where post-processing is done typically using PC-based commercial software languages and tools. Because of commercial software systems generality their functions are notoriously slow and more than often are the bottleneck even for short duration simulator-based tests. There is a need to do post-processing faster and within an hour after test completion, including all required operations on the simulator and receiver to prepare and move off the post-processing files. This is especially significant in order to use the previous test feedback for the next simulation setup or to run near back-to-back simulation scenarios. Solving the post-processing timing problem is critical for a pre-flight test program success. Towards this goal an approach was developed that allows to speed-up post-processing by an order of a magnitude. It is based on improving the post-processing bottleneck function algorithm using a priory information that is specific to a GPS simulation application and using only the necessary volume of truth data. The presented postprocessing scheme was used in support of a few successful space flight missions carrying GPS receivers.
报告类型: 科技报告
检索历史
应用推荐