原文传递 [Development of New Mathematical Methodology in Air Traffic Control for the Analysis of Hybrid Systems]
题名: [Development of New Mathematical Methodology in Air Traffic Control for the Analysis of Hybrid Systems]
作者: Hermann, Robert
关键词: mathematical;development;analysis;systems;hybrid;control;traffic;method;different;literature
摘要: The aim of this research is to develop new mathematical methodology for the analysis of hybrid systems of the type involved in Air Traffic Control (ATC) problems. Two directions of investigation were initiated. The first used the methodology of nonlinear generalized functions, whose mathematical foundations were initiated by Colombeau and developed further by Oberguggenberger; it has been extended to apply to ordinary differential. Systems of the type encountered in control in joint work with the PI and M. Oberguggenberger. This involved a 'mixture' of 'continuous' and 'discrete' methodology. ATC clearly involves mixtures of two sorts of mathematical problems: (1) The 'continuous' dynamics of a standard control type described by ordinary differential equations (ODE) of the form: dx/dt = f(x, u) and (2) the discrete lattice dynamics involved of cellular automata. Most of the CA literature involves a discretization of a partial differential equation system of the type encountered in physics problems (e.g. fluid and gas problems). Both of these directions requires much thinking and new development of mathematical fundamentals before they may be utilized in the ATC work. Rather than consider CA as 'discretization' of PDE systems, I believe that the ATC applications will require a completely different and new mathematical methodology, a sort of discrete analogue of jet bundles and/or the sheaf-theoretic techniques to topologists. Here too, I have begun work on virtually 'virgin' mathematical ground (at least from an 'applied' point of view) which will require considerable preliminary work.
报告类型: 科技报告
相关文献
检索历史
应用推荐