摘要: |
The thermal characteristics of microbursts are utilized by the AWAS IR and OAT features to provide predictive warning of hazardous microbursts ahead of the aircraft during landing or take off. The AWAS was evaluated satisfactorily in 1990 on a Cessna Citation that was intentionally flown into a number of wind shear events. The events were detected, and both the IR and OAT thermal features were shown to be effective. In 1991, AWAS units were flown on three American Airline MD-80's and three Northwest Airlines DC-9's to study and to decrease the nuisance alert response of the system. The AWAS was also flown on the NASA B737 during the summer of 1991. The results of these flights were inconclusive and disappointing. The results were not as promising as before because NASA conducted research flights which were outside of the normal operating envelope for which the AWAS is designed to operate. In an attempt to compensate for these differences in airspeed and mounting location, the automatic features of the system were sometimes overridden by NASA personnel during the flight. Each of these critical factors is discussed in detail. The effect of rain on the OAT signals is presented as a function of the air speed. Use of a 4 pole 1/20 Hertz filter is demonstrated by both the IR and thermal data. Participation in the NASA 1992 program was discussed. FAA direction in the continuing Certification program requires the addition of a reactive feature to the AWAS predictive system. This combined system will not require flight guidance on newer aircraft. The features of AWAS-IV, with the NASA algorithm included, were presented. Expected completion of the FAA Certification plan was also described. |