题名: |
Deep Architecture for Citywide Travel Time Estimation Incorporating Contextual Information |
正文语种: |
eng |
作者: |
Tang, Kun;Chen, Shuyan;Khattak, Aemal J.;Pan, Yingjiu |
作者单位: |
Southeast Univ Jiangsu Key Lab Urban ITS Nanjing Jiangsu Peoples R China|Southeast Univ Jiangsu Prov Collaborat Innovat Ctr Modern Urban Nanjing Jiangsu Peoples R China|Southeast Univ Sch Transportat Sipailou 2 Nanjing Jiangsu Peoples R China |
关键词: |
Contextual features;data-driven;deep learning;sparse denoising auto-encoder;urban road network |
摘要: |
To meet the growing demand of accurate and reliable travel time information in intelligent transportation systems, this a develops a deep architecture incorporating contextual information to estimate travel time in urban road network from a citywide persp |
出版年: |
2021 |
期刊名称: |
Journal of Intelligent Transportation Systems |
卷: |
25 |
期: |
1/6 |
页码: |
313-329 |