当前位置: 首页> 国外交通期刊数据库 >详情
原文传递 Deep Architecture for Citywide Travel Time Estimation Incorporating Contextual Information
题名: Deep Architecture for Citywide Travel Time Estimation Incorporating Contextual Information
正文语种: eng
作者: Tang, Kun;Chen, Shuyan;Khattak, Aemal J.;Pan, Yingjiu
作者单位: Southeast Univ Jiangsu Key Lab Urban ITS Nanjing Jiangsu Peoples R China|Southeast Univ Jiangsu Prov Collaborat Innovat Ctr Modern Urban Nanjing Jiangsu Peoples R China|Southeast Univ Sch Transportat Sipailou 2 Nanjing Jiangsu Peoples R China
关键词: Contextual features;data-driven;deep learning;sparse denoising auto-encoder;urban road network
摘要: To meet the growing demand of accurate and reliable travel time information in intelligent transportation systems, this a develops a deep architecture incorporating contextual information to estimate travel time in urban road network from a citywide persp
出版年: 2021
期刊名称: Journal of Intelligent Transportation Systems
卷: 25
期: 1/6
页码: 313-329
检索历史
应用推荐