摘要: |
There were two primary objectives of the research effort reported herein. The first objective was to identify and evaluate noise source path identification technology applicable to single engine propeller driven aircraft that can be used to identify interior noise sources originating from structure-borne engine propeller vibration, airborne propeller transmission, airborne engine exhaust noise, and engine case radiation. The approach taken to identify the contributions of each of these possible sources was first to conduct a Principal Component Analysis (PCA) of an in-flight noise and vibration database acquired on a Cessna Model 182E aircraft. The second objective was to develop and evaluate advanced technology for noise source ranking of interior panel groups such as the aircraft windshield, instrument panel, firewall, and door window panels within the cabin of a single engine propeller driven aircraft. The technology employed was that of Acoustic Holography (AH). AH was applied to the test aircraft by acquiring a series of in-flight microphone array measurements within the aircraft cabin and correlating the measurements via PCA. The source contributions of the various panel groups leading to the array measurements were then synthesized by solving the inverse problem using the boundary element model. |