论文题名: | 基于卡尔曼滤波的短时交通流预测方法研究 |
关键词: | 卡尔曼滤波;短时交通流预测;智能交通系统;混沌特性;BP神经网络 |
摘要: | 随着智能交通系统的快速发展和广泛应用,道路交通流量分析和处理的研究越来越多。作为交通运输是否进入信息时代的标志,智能交通系统将成为我国交通运输体系的发展方向。交通流预测是智能交通的重要组成部分,预测未来时段交通流状况对缓解交通拥堵,有效利用道路资源有着重要的意义。 交通流预测的研究模型有很多种,如:神经网络模型、多元线性回归模型、时间序列模型、历史趋势模型、kalman滤波模型等。而本文则着重研究kalman滤波在交通流预测中的应用。 本文研究了交通流的混沌特性,对交通流的可预测性进行判别。结合相空间重构理论建立相空间中的Kalman滤波交通流预测模型。本文选择了C-C算法进行相空间重构参数的计算。此外,本文为了改善相空间中的Kalman滤波模型预测效果,提出了利用两周中相对应时间的交通流差值或者比值代替原始数据,建立相空间差值回归预测模型和相空间比值回归预测模型。通过实际交通流的实验仿真,计算模型性能指标,并进行比较分析。本文将所建立预测模型与基于BP神经网络的交通流预测模型作对比,研究表明本文算法性能指标要优于BP神经网络预测模型。 本文还通过增加原始数据的方法,建立多周数据相空间比值回归模型,并与单周数据相空间比值回归模型进行性能对比分析,证明了其预测的优势之处。 最后,本文研究了多点数据融合在交通流预测中的应用。本文将数据融合理论应用在相空间的Kalman滤波交通流预测模型中,并对实际数据进行仿真验证,将单点数据相空间的Kalman滤波预测模型和多点数据融合的相空间Kalman滤波预测模型进行性能对比分析,表明多点数据融合理论在交通流预测中有较好的应用效果。 |
作者: | 石曼曼 |
专业: | 控制理论与控制工程 |
导师: | 余立建 |
授予学位: | 硕士 |
授予学位单位: | 西南交通大学 |
学位年度: | 2012 |
正文语种: | 中文 |