摘要: |
为了监测与评判道路上行驶的智能汽车的实时状态,基于研发的智能汽车的车载感知系统,包括通过视觉传感器、激光雷达、GPS定位、车载传感器系统及车载总线获取车内及周围环境信息。采用V2X通讯设备等获取路侧端雷视一体机、路侧传感器、气象传感器传输的交通信息,通过V2X通讯设备、4G通讯模块传送到云服务器并建立模糊评判模型。基于可信度的模糊推理算法对环境信息和交通信息进行融合,并以此为依据对行驶车辆的状态进行评判。首先,建立针对车辆行驶状态的模糊评判集合和各参数隶属度函数,计算出各参数的隶属度,并对行驶车辆的各个参数建立典型的行驶状态评判参数数据集合。其次,采用模糊假言推理方法,以典型的数据集合为基础建立带可信度和阈值的模糊规则库。应用麦姆德尼方法,建立与规则库的每个规则所对应的模糊关系矩阵库。以车辆行驶时接收到的车载端和路侧端信息作为输入,应用规则库规则进行带有可信度的模糊推理。然后,以相似度作为匹配度,对推理规则设定阈限,按照证据与规则的前件不相等的情况,计算结论的可信度得出结论。对结论进行冲突消解时,冲突消解的策略为取可信度高的结论。最后,应用匹配度对结论的可靠性进行验证,并在多个道路场景实时行驶的车辆上对算法进行试验验证。研究结果表明:算法对行驶车辆状态的评判与实车的状态相一致,可实现对车辆不安全状态的报警与行驶状态的干预,对保障行车安全有显著积极的实际应用意义。 |