摘要: |
当路面附着情况和车辆行驶状态不断变化时,基于恒定侧偏刚度的模型预测控制(MPC)不能考虑轮胎非线性特性的影响,难以保证车辆轨迹跟踪的适应性。为此,提出一种考虑轮胎侧向力计算误差的自适应模型预测控制(AMPC),以提高智能汽车在不确定工况下的轨迹跟踪性能。分析了路面附着系数和垂向载荷对轮胎侧向力的影响,基于平方根容积卡尔曼滤波(SCKF)算法,设计了利用侧向加速度和横摆角速度作为测量变量的前后轮胎侧向力估计器。利用轮胎侧向力线性计算值与估计值的差值计算得到侧偏刚度修正因子,设计了前后轮胎侧偏刚度的自适应修正准则,进而提出了一种基于时变修正刚度的AMPC控制方法。基于CarSim与MATLAB/Simulink联合仿真和硬件在环测试平台,对AMPC控制的有效性和实时性进行了验证。研究结果表明:在不同的路面附着情况和车辆行驶状态下,AMPC控制都能够降低横向位置偏差和航向角偏差,有效提高车辆的轨迹跟踪精度,其控制效果明显优于基于恒定侧偏刚度的标准MPC控制。尤其在低附着工况下,标准MPC控制会因为线性轮胎力的计算误差过大而导致车辆在轨迹跟踪时严重失稳,而AMPC控制通过估计轮胎力修正侧偏刚度依然能够保证车辆稳定有效的跟踪参考轨迹。所提出的AMPC控制在保证控制精度的同时具有良好的实时性,对智能汽车控制系统的设计与优化具有重要参考价值。 |