摘要: |
若运输网络中的重要节点发生故障,中欧班列的运输效率和货物流动会受到严重制约。本文提出一种基于改进TOPSIS(Technique for Order Preference by Similarity to an Ideal Solution)法及灰色关联分析的多层网络节点重要性评价方法。首先,以中欧班列运输网络结构特征为基础,构建中欧班列多层网络;其次,选取度中心性、介数中心性及接近中心性等多个评价指标,运用改进TOPSIS法计算节点单层网络重要度评价值,采取灰色关联分析融合得到节点综合重要度评价值;最后,利用多层网络SIR(Susceptible Infected Recovered Model)模型验证方法的有效性。结果表明:本文识别出的关键节点包含中欧班列主要线路的起讫城市、境内外重要口岸和中欧班列集结中心,结果与实际情况较为契合;采用排序前10%重要节点作为初始感染节点,SIR网络感染率在20次迭代后达到97.8%,本文提出方法的网络节点感染率及传播速率均高于BC(Betweenness Centrality)算法、DC(Degree Centrality)算法和PageRank算法等传统单一网络排序方法,即识别的关键节点对全局网络的影响更为普遍和高效。此外,根据排序结果从国家层面提出相应的政策建议,有助于提高中欧班列运输网络的鲁棒性。 |