题名: |
Design and Evaluation of the Terminal Area Precision Scheduling and Spacing System. |
作者: |
Chen, L.; Martin, L.; Sadovsky, A.; Sullivan, C.; Swenson, H. N.; Thipphavong, J. |
关键词: |
Air Traffic Control; Aircraft Approach Spacing; Airports; Management Planning; Radar Approach Control; Scheduling; Terminal Guidance |
摘要: |
This paper describes the design, development and results from a high fidelity human-in-the-loop simulation of an integrated set of trajectory-based automation tools providing precision scheduling, sequencing and controller merging and spacing functions. These integrated functions are combined into a system called the Terminal Area Precision Scheduling and Spacing (TAPSS) system. It is a strategic and tactical planning tool that provides Traffic Management Coordinators, En Route and Terminal Radar Approach Control air traffic controllers the ability to efficiently optimize the arrival capacity of a demand-impacted airport while simultaneously enabling fuel-efficient descent procedures. The TAPSS system consists of four-dimensional trajectory prediction, arrival runway balancing, aircraft separation constraint-based scheduling, traffic flow visualization and trajectory-based advisories to assist controllers in efficient metering, sequencing and spacing. The TAPSS system was evaluated and compared to today's ATC operation through extensive series of human-in-the-loop simulations for arrival flows into the Los Angeles International Airport. The test conditions included the variation of aircraft demand from a baseline of today's capacity constrained periods through 5%, 10% and 20% increases. Performance data were collected for engineering and human factor analysis and compared with similar operations both with and without the TAPSS system. The engineering data indicate operations with the TAPSS show up to a 10% increase in airport throughput during capacity constrained periods while maintaining fuel-efficient aircraft descent profiles from cruise to landing. |
报告类型: |
科技报告 |