摘要: |
Practical Applications Since its introduction to the building code, the alternative, conditional mean spectrum-based method for ground motion selection has gained traction among practitioners due to its reduced conservatism relative to traditional selection methods. To simplify the implementation of conditional mean spectra in practice, the building code alternative method requires a minimum of only two target spectra be used, so long as their envelope satisfies a lower bound within a specified period range. However, there are few quantitative studies of the impacts of these simplifications on the resulting building demands. In this study, we demonstrate how building demands vary when a tall building in a high-seismicity region is analyzed using either a traditional or a conditional mean spectrum-based selection approach. We find that using two reasonable target spectra in accordance with the alternative method produces acceptable building demands as compared to the demands obtained from performing exhaustive nonlinear analysis with a large number of target spectra. Furthermore, we illustrate how different choices of conditional mean spectrum targets maximize different types of building demands (e.g., interstory drift, base shear, floor acceleration) and how some types of demands are more sensitive to this choice than others. This work provides a procedure for evaluating conditional mean spectrum-based ground motion selection that can be replicated in the future for other buildings or structural systems. |