摘要: |
新冠肺炎疫情对旅客中长距离的城际交通出行影响巨大,现有研究侧重疫情暴发初期疫情对城际交通出行的影响,针对常态化疫情防控阶段旅客城际出行选择行为的研究相对较少,因此,本文旨在研究常态化疫情防控阶段旅客中长距离城际出行选择行为。针对民航、高铁、普铁和自驾等方式分别建立包含4种城际出行方式的多指标多因果出行选择模型(MIMIC),模型中引入感知防疫安全程度、防疫策略、乘车体验与出行习惯4个潜变量,探究潜变量与观测变量的因子载荷并辨识模型参数,求取各潜变量的拟合值;在此基础上建立考虑出行方式特性、旅客社会经济属性与潜变量的多出行方式联合选择行为模型(MIMIC-Logit),探究常态化疫情防控阶段旅客出行心理对其出行决策的影响;假设出行费用、时间距离等变量的随机系数服从正态分布,采用抽样1000次的Halton序列对随机系数进行仿真求解,得到随机系数的回归分析结果。以2021年4月—6月到达西安旅客的调查数据为例进行实证研究,结果发现:所提MIMIC-Logit模型的拟合优度与命中率分别为43.621%与83.312%,均高于多项Logit模型与随机系数Logit模型;旅客对不同方式的出行费用、时间与距离的偏好具有异质性,且出行方式特性、社会经济属性与潜变量都对出行选择的效用有显著影响。弹性分析表明,当感知防疫安全程度与防疫策略提升了100%时,旅客选择民航出行的概率分别提升了23.207%与21.349%;而当乘车体验提升了100%时,旅客选择高铁出行的概率提升了18.229%。综上,所提方法揭示了潜变量对旅客出行选择行为的显著影响;通过提升感知防疫安全程度、防疫策略与乘车体验等手段,可以提升旅客选择高铁、民航出行的概率。 |