当前位置: 首页> 国外交通期刊数据库 >详情
原文传递 Disentangling City-Level Macroscopic Traffic Performance Patterns through a Trigonometric Multiseasonal Filtering Algorithm: Inspiration from Big Data of Ride-Sourcing Trips
题名: Disentangling City-Level Macroscopic Traffic Performance Patterns through a Trigonometric Multiseasonal Filtering Algorithm: Inspiration from Big Data of Ride-Sourcing Trips
正文语种: eng
作者: Ma, Lu;Yuan, Feng;Yan, Xuedong;Zhang, Jiechao
作者单位: Beijing Jiaotong Univ Sch Traff & Transportat Key Lab Transport Ind Big Data Applicat Technol C Minist Transport Beijing 100044 Peoples R China;Beijing Jiaotong Univ Sch Traff & Transportat Beijing 100044 Peoples R China;Beijing Jiaotong Univ Sch Traff & Transportat Key Lab Transport Ind Big Data Applicat Technol C Minist Transport Beijing 100044 Peoples R China;Univ Cent Florida Dept Civil Environm & Construct Engn 12800 Pegasus Dr Orlando FL 32816 USA
关键词: City-level traffic performance;Ride-sourcing trip;Big data;Temporal pattern filtering
摘要: This study seeks to design a city-level trip speed performance index (CTSPI) providing an alternative aspect in quantifying the traffic performance of an entire city. Another objective is to disentangle the original CTSPI time series into several featured patterns, including a trend pattern, two seasonality patterns, and a remainder pattern. The big data in the form of observations of ride-sourcing trips in Beijing, China were adopted. This study also introduces a state-space model, the TBATS [trigonometric, Box-Cox transformation, auto-regressive moving average (ARMA) errors, trend, and seasonal components] filtering procedure to decompose the CTSPI time series. This study adopts Beijing as a representative example because the city has very typical and complicated traffic performance patterns. The proposed CTSPI directly reflects the average trip speed, normalized by the best performance supplied by the corresponding infrastructure systems. After filtering out fluctuation, noise, and irregular patterns, it reveals a smooth and clear-cut trend in the evolving process of the city's traffic condition, which was never previously disclosed and is important in understanding the macroscopic long-term tendencies of the city's traffic performance. The results indicate that the CTSPI is capable of capturing the traffic performance of the city well and can sense the influence of special dates or major events, such as the Beijing 2022 Olympic Winter Games, advising tremendous application of traffic management. City-level macroscopic traffic performance is usually measured as index quantities and used to assess traffic situations in different cities. Most often, it is utilized to provide a quantified impression of the degree of congestion to the public, or as traffic-congestion criteria for ranking cities. This study illustrates the importance of measuring city-level macroscopic traffic performance, especially on a daily basis as is appropriate for gauging the impacts of many macroscopic factors on city-level traffic situations.
出版年: 2022
期刊名称: Journal of Transportation Engineering
卷: 148
期: 3
页码: 04021120.1-04021120.12
检索历史
应用推荐