论文题名: | 高速铁路18号道岔辙叉区钢轨打磨廓形及疲劳寿命研究 |
关键词: | 高铁道岔;打磨廓形;动力学特性;疲劳寿命 |
摘要: | 随着我国高铁里程数的快速增长,高铁运营速度也在持续提升,我国对动车组行驶时的平稳性及安全性保障也越发重视,相关的科研与分析就显得十分重要。道岔是高速铁路中不可或缺的部件之一,但也是其薄弱环节之一,时常面临着钢轨疲劳损伤严重,打磨维护成本高的问题。 本文以客专线18号可动心轨道岔为研究对象,基于NURBS曲线理论拟合出辙叉区钢轨关键截面廓形;以辙叉区钢轨廓形上的16个型值点为设计变量,以打磨材料去除量和脱轨系数的减少为目标函数,以廓形几何条件和滚动接触疲劳因子为约束条件,建立了辙叉区钢轨打磨廓形设计模型。通过粒子群算法求解模型,得到了辙叉区钢轨4个关键截面下的设计打磨廓形。基于Workbench软件,本文建立了辙叉区钢轨轮轨接触有限元模型,对比标准廓形和设计打磨廓形4个关键截面处的接触面积、接触应力以及von-Mises应力;通过输入标准廓形和打磨廓形,本文在UM软件中建立了18号道岔变截面模型,对比分析了列车逆侧向过岔时,两种廓形下的动力学响应评价指标;基于有限元模型中得到的辙叉区钢轨接触应力和动力学模型中得到的轮轨垂向力-时间曲线,通过Fe-Safe软件建立了辙叉区钢轨疲劳分析模型,对比标准廓形和设计打磨廓形4个关键截面处的最小疲劳寿命。 同时,本文通过实测LMa车轮磨耗廓形数据建立了磨耗车轮模型,探究车轮磨耗产生的型面演变对于设计打磨廓形匹配状态、动力学性能、轮轨接触力学以及最小疲劳寿命的影响。此外,本文还探究了不同因素对于轮轨接触有限元应力、动力学响应以及疲劳寿命的影响,结果表明: 1)在车辆动力学性能对比中,采用设计打磨廓形后,轮轨横向力由55.3kN降低至49.6kN,减小了10.3%;轮重减载率由0.348降低至0.311,减小了10.6%;脱轨系数由0.784降低至0.721,减小了8.1%;车体横向振动加速度由0.301m/s2降低至0.254m/s2,减小了15.6%;轮轨垂向力由132kN降低至121.6kN,减小了7.88%。列车逆侧向过岔时的平稳性提升,轮轨力下降,安全性也得到了保障。 2)在轮轨接触力学对比中,采用设计打磨廓形后,各关键截面的von-Mises应力分别下降了8.4%、8.0%、12%和9.5%;各关键截面的接触应力分别下降了12.9%、15.8%、17.9%和16.5%。打磨廓形有效地降低了轮轨接触应力及von-Mises应力,增大了接触区域面积,有利于降低列车过岔时的轮轨磨耗及损伤破坏。 3)在疲劳寿命对比中,采用设计打磨廓形后,各关键截面的最小对数疲劳寿命分别从5.82、5.94、5.61、5.62提升至6.22、6.32、6.04、6.01。设计打磨廓形有效地提升了辙叉区钢轨各关键截面的最小疲劳寿命。 4)轮轨磨耗产生的车轮廓形演变对于辙叉区钢轨设计打磨廓形的各方面性能有较显著的影响。动力学响应会持续变化,呈现整体的下降或上升趋势。各截面的接触应力在15万公里处达到最大值,分别为3549.8MPa、3059.4MPa、2292.7MPa和2582.1MPa。各截面的最小对数疲劳寿命在在15万公里处达到最小,分别为5.42、5.73、5.05和4.58。 |
作者: | 王松涛 |
专业: | 机械工程 |
导师: | 林凤涛 |
授予学位: | 硕士 |
授予学位单位: | 华东交通大学 |
学位年度: | 2021 |