原文传递 Piloted Well Clear Performance Evaluation of Detect and Avoid Systems with Suggestive Guidance.
题名: Piloted Well Clear Performance Evaluation of Detect and Avoid Systems with Suggestive Guidance.
作者: Mueller, E.; Santiago, C.; Watza, S.
关键词: Pilot performance, Collision avoidance, Unmanned aircraft systems, Aircraft detection, Display devices, Aerospace safety, Automatic control, Human-computer interface, National airspace system, Air traffic control, Flight simulation, Flight tests, Performance tests
摘要: Regulations to establish operational and performance requirements for unmanned aircraft systems (UAS) are being developed by a consortium of government, industry and academic institutions (RTCA, 2013). Those requirements will apply to the new detect-and-avoid (DAA) systems and other equipment necessary to integrate UAS with the United States (U.S) National Airspace System (NAS) and will be determined according to their contribution to the overall safety case. That safety case requires demonstration that DAA-equipped UAS collectively operating in the NAS meet an airspace safety threshold (AST). Several key gaps must be closed in order to link equipment requirements to an airspace safety case. Foremost among these is calculation of the systems risk ratio, the degree to which a particular system mitigates violation of an aircraft separation standard (FAA, 2013). The risk ratio of a DAA system, in combination with risk ratios of other collision mitigation mechanisms, will determine the overall safety of the airspace measured in terms of the number of collisions per flight hour. It is not known what the effectiveness is of a pilot-in-the-loop DAA system or even what parameters of the DAA system most improve the pilots ability to maintain separation. The relationship between the DAA system design and the overall effectiveness of the DAA system that includes the pilot, expressed as a risk ratio, must be determined before DAA operational and performance requirements can be finalized. Much research has been devoted to integrating UAS into non-segregated airspace (Dalamagkidis, 2009, Ostwald, 2007, Gillian, 2012, Hesselink, 2011, Santiago, 2015, Rorie 2015 and 2016). Several traffic displays intended for use as part of a DAA system have gone through human-in-the-loop simulation and flight-testing. Most of these evaluations were part of development programs to produce a deployable system, so it is unclear how to generalize particular aspects of those designs to general requirements for future traffic displays (Calhoun, 2014). Other displays have undergone testing to collect data that may generalize to new displays, but have not been evaluated in the context of the development of an overall safety case for UAS equipped with DAA systems in the NAS (Bell, 2012). Other research efforts focus on DAA surveillance performance and separation standards. Together with this work, they are expected to facilitate validation of the airspace safety case (Park, 2014 and Johnson, 2015). The contribution of the present work is to quantify the effectiveness of the pilot-automation system to remain well clear as a function of display features and surveillance sensor error. This quantification will help enable selection of a minimum set of DAA design features that meets the AST, a set that may not be unique for all UAS platforms. A second objective is to collect and analyze pilot performance parameters that will improve the modeling of overall DAA system performance in non-human-in-the-loop simulations. Simulating the DAA-equipped UAS in such batch experiments will allow investigation of a much larger number of encounters than is possible in human simulations. This capability is necessary to demonstrate that a particular set of DAA requirements meets the AST under all foreseeable operational conditions.
总页数: Mueller, E.; Santiago, C.; Watza, S.
报告类型: 科技报告
检索历史
应用推荐