摘要: |
针对钢桥螺栓脱落病害人工巡检效率低和智能化检测样本数据集不足的问题,提出一种基于数据深度增强的钢桥螺栓脱落智能检测方法。该方法首先以采集的螺栓图像数据集为基础,利用深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Networks, DCGAN)对有限的螺栓图像进行增广;然后将生成的图像与原始图像合并构建增广后的数据集;再将数据集输入到单阶段目标检测网络YOLO(You Only Look Once, YOLO)中,结合迁移学习方法进行模型训练,并对训练后模型的性能进行验证;最后,进行螺栓脱落病害识别。为验证该方法的可行性,对螺栓脱落检测模型进行试验验证,并对不同采集环境下的某钢桥拼接板螺栓脱落病害进行检测。结果表明:DCGAN可有效生成逼真的螺栓图像,且与常规增广方式相比,DCGAN生成的图像质量更高、性能最优;检测模型受拍摄距离、角度及光照强弱影响且对角度最为敏感,控制拍摄距离在1.6 m内、拍摄角度在20°内、外界光线明亮可保证模型性能较优;与常规增广后训练的模型相比,利用生成图像增广后训练的模型检测性能更优且鲁棒性更好;该智能检测方法可以用于螺栓脱落病害检测,且检测精度明显提高。 |