当前位置: 首页> 国外交通期刊数据库 >详情
原文传递 O'Hare Airport Short-Term Ground Transportation Modal Demand Forecast Using Gaussian Processes
题名: O'Hare Airport Short-Term Ground Transportation Modal Demand Forecast Using Gaussian Processes
正文语种: eng
作者: Natalia Zuniga-Garcia;Arindam Fadikar;Damola M. Akinlana;Joshua Auld
作者单位: Energy Systems Argonne National Laboratory 9700 S. Cass Ave. Lemont IL 60439;Mathematics and Computer Science Argonne National Laboratory 9700 S. Cass Ave. Lemont IL 60439;Dept. of Mathematics and Statistics Univ. of South Florida College of Art
关键词: Transportation network companies (TNC); Urban rail transit; Airport demand; Airport management; Demand forecast; Heteroscedastic Gaussian process (GP) regression
摘要: The principal objective of this study is to analyze the spatial and temporal variation of ground transportation airport demand and provide demand forecast to inform planning capability and explore alternatives for investments to accommodate airport growth
出版年: 2024
期刊名称: Journal of Transportation Engineering, Part A: Systems
卷: 150
期: 3
页码: 04023143.1-04023143.18
检索历史
应用推荐