当前位置: 首页> 学位论文 >详情
原文传递 AUV多源观测数据融合方法及应用技术研究
论文题名: AUV多源观测数据融合方法及应用技术研究
关键词: 固有不规则蛋白质;蛋白质结构;支持向量机;局部线性嵌入;Adaboost算法
摘要: 随着人类基因组计划的顺利进展,越来越多的蛋白质序列被测定出来,而利用实验方法测量蛋白质及生物大分子的结构相当繁琐,既耗时又费力,因此利用理论计算方法来研究蛋白质的结构和功能从而指导实验是一项非常有意义的工作。本文从蛋白质的一级序列出发使用多分类器组合算法对固有不规则蛋白质结构进行分类研究,论文主要工作如下:
   1、构建规则和不规则蛋白质序列这两类序列集,依据长度不同的不规则蛋白质序列中氨基酸残基含量的不同,将不规则数据集分为长(>30个氨基酸残基)和短(≤30个氨基酸残基)两个序列集。
   2、基于氨基酸序列的单肽、双肽结构属性和疏水性物理属性出发,利用滑动窗口法将氨基酸序列量化,利用径向基核函数的支持向量机方法构建成员预测器模型。利用5倍交叉验证法确定长、短序列的窗口长度以及由此确定支持向量机核函数的参数值gamma值和惩罚系数coat值。
   3、在特征提取方面,由于滑动窗口法得到的数据矩阵容易形成维灾难,需要对矩阵进行维数规约,即将数据由高维空间投影到低维空间。主要分析了现在常用的降维方法包括线性降维方法中主成分分析法(PCA)以及一种基于PCA方法发展起来的一种非线性降维方法一核主成分分析法(KPCA)。在此基础上本文将流形学习算法中局部线性嵌入法(LLE)引入了固有不规则蛋白质结构预测中,并利用实验方法对PCA、KPCA以及LLE算法进行了验证,得出基于LLE方法的降维效果最好,从而得出蛋白质序列中氨基酸残基之间存在局部线性关系。
   4、为了提高固有不规则蛋白质结构预测精度,本文提出了一种基于Adaboost算法的SVM预测器融合方法预测固有不规则蛋白质结构。因此了解了预测器融合的基本概念、体系框架、成员预测器的设计方法以及Adaboost算法的基本原理和实现步骤。通过实验结果可以看出,利用多预测器融合算法后的预测精度明显优于单个成员预测器的预测精度。
作者: 李举锋
专业: 控制理论与控制工程
导师: 边信黔
授予学位: 硕士
授予学位单位: 哈尔滨工程大学
学位年度: 2011
正文语种: 中文
检索历史
应用推荐