论文题名: | 复杂环境下多目标图像分割算法研究 |
关键词: | 多目标图像;图像分割算法;特征提取;视频监控;支持向量机 |
摘要: | 计算机智能视频监控系统用于长途客运车上可以实现对其运营状况的有效监管。目前虽然很多长途客运车上都安装了监控摄像头,但实际的监控任务仍需要大量的人工工作来完成,且目前大部分的视频监控系统所提供的信息都是没有经过任何分析的数据,这就不能充分发挥其智能、实时监督的作用。复杂环境下多目标图像分割算法的研究就是研究能将视频监控系统中视频序列图像中的多目标从复杂的交通背景中快速分割出来的方法,他是各种后续处理,如:目标的特征提取以及目标的识别、跟踪和行为理解等的前提和基础;是实现智能视频监控系统发挥其智能、实时监督作用的关键技术;也是治理长途客运车运营中司机中途载客收费而不上报问题的有效方法。本论文的主要研究工作和创造性成果总结如下: (1)针对霍夫变换所需存储空间大、运算速度慢的问题,对其进行了改进。首先将半径不确定圆的检测转换为半径确定圆的检测,其次采用最大值法和圆不覆盖原则以及标准差法避免对阈值的判断,提高了检测的准确率和检测的速度; (2)采用改进的二维OTSU方法和量子粒子群结合的方法用于复杂环境中多目标图像的分割,使分割精度和分割速度都得到了提高; (3)提出了一种支持向量机样本选择新方法,在二维灰度直方图的指导下选择一定数量的样本来训练支持向量机,并用其对复杂环境中的多目标图像进行分割,不仅得到了理想的分割效果,分割速度也得到了提高; (4)从分割后的图像中提取纹理特征、小波特征和几何特征,并采用欧氏距离法实现对头顶的识别,进一步验证算法的有效性。 |
作者: | 朱德正 |
专业: | 计算机应用技术 |
导师: | 蒋加伏 |
授予学位: | 硕士 |
授予学位单位: | 长沙理工大学 |
学位年度: | 2011 |
正文语种: | 中文 |