当前位置: 首页> 交通中文期刊数据库 >详情
原文传递 混合智能算法在城市道路短时交通流量预测中的研究
题名: 混合智能算法在城市道路短时交通流量预测中的研究
正文语种: 中文
作者: 石永辉;鲍俊;严忠贞;蒋圣萍
关键词: 交通流量;短时预测;小波变换;粒子群算法;支持向量机
摘要: 对城市道路短时交通流进行准确预测是实现城市交通控制与交通诱导的关键。针对目前单一预测方法预测精度不高的问题,提出了小波与支持向量机(SVM)融合的预测新方法;同时为了避免SVM知识学习过程陷入局部最优的问题,采用粒子群算法(PSO)来优化SVM的关键参数,以提高对短时交通流量的预测精度。通过对武汉市道路交通流数据的实验分析,结果表明所提出的方法能够准确提取实验数据关键特征,显著提高SVM的预测精度,且结果比单一使用方法提高了近9%。
期刊名称: 交通信息与安全
出版年: 2011
期: 04
页码: 58-61
检索历史
应用推荐