论文题名: | 交通监控系统中目标跟踪与行为识别研究 |
关键词: | 交通监控系统;目标跟踪;混合Boosting算法;混合目标检测模型;轨迹分析;行为识别 |
摘要: | 智能交通监控系统能够对交通事件进行自动化检测,对行人或车辆进行智能化监视,更能适应实际应用的需要。论文主要对智能交通监控系统中的目标检测、目标跟踪、以及目标行为分析理解三个环节中存在的关键问题进行深入研究,并提出新的解决方法,主要工作体现在以下几个方面: (1)针对当前大多利用单一模型进行目标检测存在的问题,比如高误检率,光照敏感,动态场景鲁棒性差等问题,提出了一种混合运动检测模型,将对光照变化不敏感的目标检测模型和对动态场景变化跟踪能力快的运动检测模型融合,利用融合策略消除检测过程中的漏检和误检。最后提出利用速运动目标检测法减少该模型的计算量,加上被融合的两种模型都有较好的实时性特点,使得混合模型仍然具备一定的实时性。 (2)研究了跟踪过程中的目标描述,提出一种基于多特征选择的运动目标跟踪算法。将RankBoos与AdaBoost组合,构建混合boosting算法,根据目标信息和背景信息选择特征,建立特征排序分类器,并在跟踪的过程中不断自适应更新。采用卡尔曼滤波对目标区域进行粗预测,然后利用排序分类器结合Mean-shift算法完成目标的精确跟踪。该算法可以根据不同的目标和背景信息,自适应的进行特征选择,对于克服场景中存在光照、干扰、遮挡等问题是非常有利的。 (3)提出了一种基于轨迹分析的运动行为识别方法。通过采用聚类的方法对跟踪得到的轨迹进行行为模式学习得到运动模式的轨迹参考序列。然后将轨迹视为时间序列,利用动态时间归正(DTW)技术对时间序列长度没有限制的特性,将DTW与K近邻算法结合用于待识别轨迹与参考序列模板轨迹的匹配,匹配过程中,采用DTW下界函数剔除大量不相似轨迹,以加快匹配速度,进而识别目标的运动状态。 实验结果表明,本文的目标检测、跟踪算法可以对目标进行有效的检测和稳定跟踪,基于轨迹分析的运动行为识别方法在十字路口行人的左转,右转,前行,U型转达到了较高的识别率。 |
作者: | 吕斌 |
专业: | 交通信息工程及控制 |
导师: | 夏利民 |
授予学位: | 硕士 |
授予学位单位: | 中南大学 |
学位年度: | 2010 |
正文语种: | 中文 |