摘要: |
Alternative jet fuels hold the promise of energy supply diversification in the face of volatile oil prices. In addition, alternative fuels may reduce the environmental impact from aviation. To properly account for the environmental costs and benefits of introducing alternative fuels, we must evaluate the environmental impacts from the fuel origin, as it is produced, to its end, as combustion products enter and react in the environment. This is referred to as a life cycle analysis from "well to wake." The focus of Project 28 was on the creation and use of an aviation-specific life-cycle framework to assess the environmental impacts of alternative jet fuels from well to wake. Because a fuel must be both environmentally and economically sustainable, trade-offs between economic cost of production and greenhouse gas emissions are also being examined. The Project 28 broad objective was to evaluate the relative environmental impacts of multiple potential alternative aviation fuels that are compatible with existing aircraft and infrastructure. The project was considering traditional kerosene fuels from conventional and unconventional petroleum resources; hydrocarbon fuels derived from fossil fuels such as oil sands and oil shale; synthetic liquid fuels manufactured from coal, biomass, or natural gas; hydroprocessed renewable jet fuel made from renewable oil resources including those from algae; and advanced techniques of converting sugars to jet fuel. This work expanded upon PARTNER Project 17, which resulted in a PARTNER-RAND alternative fuels report on the economic and policy aspects of adopting alternative jet fuels. The research under this project is was done in collaboration with investigators from Projects 3, 20, 27, 30, and 31. The results are relevant to the NextGen environmental and energy goals relating to the development of alternative jet fuels. |