当前位置: 首页> 学位论文 >详情
原文传递 混沌云粒子群混合优化算法及其在港口管理中的应用研究
论文题名: 混沌云粒子群混合优化算法及其在港口管理中的应用研究
关键词: 混沌理论;云模型;粒子群算法;港口管理;吞吐量预测;优化算法
摘要: 港口吞吐量预测是进行港口体系结构优化和基础设施建设的基础,对于合理确定港口规划布局、基础设施投资规模、集疏运系统的建设起着重要的作用。泊位、岸桥作为岸线的稀缺资源,其是否能够得到科学合理的分配和调度,对于提高运营期港口生产效益和服务水平具有重要的现实意义。在港口吞吐量预测和泊位-岸桥分配过程中,模型参数的确定以及泊位-岸桥分配等NP-hard问题的求解直接关系到优化模型的可行性和有效性,智能算法的提出为上述问题的解决提供了有效途径,但任何一种智能优化算法都不是完美的,受自身结构的限制都存在一定的缺陷。
  为更好求解港口规划与运营管理中的优化问题,本文将粒子群算法(Particle Swarm Optimization,PSO)、Cat映射和云模型进行有机结合,提出混沌云粒子群混合优化算法(Chaos Cloud Particle SwarmOptimization,CCPSO),并将其应用于我国港口规划管理中,对其在港口吞吐量预测和泊位-岸桥分配中的应用进行探索和研究,具体研究内容如下:
  1)通过对Cat映射的混沌特性分析,指出Cat映射具有更好的混沌特性,因而将其引入到混合优化算法中,用于对粒子群中较差个体的混沌扰动。考虑到PSO算法易陷入局部极值和进化后期收敛速度慢,而混沌映射具有更好的遍历性以及云模型的随机性和稳定倾向性优势,因此,通过引入混合控制参数mix_gen和种群分配系数pop_distr,将PSO算法、Cat映射和云模型三种算法进行有机结合,提出CCPSO算法,以期发挥三种算法的各自优势,提高优化性能。利用经典测试函数对CCPSO算法中的混合控制参数mix_gen和种群分配系数pop_distr的取值对优化性能的影响进行了分析,给出了两参数在应用于不同优化问题时的建议值。通过对CCPSO算法在经典函数测试、模型参数优选以及复杂整数规划模型求解中表现的分析,说明了算法的有效性。
  2)针对Guass-vSVR模型参数组合选取困难,用CCPSO算法对Gauss-vSVR模型参数组合进行优选,得到了Guass-vSVR-CCPSO模型。针对港口吞吐量时间序列及其影响指标的历史数据中的跳跃数据,将能处理跳跃数据的Guass-vSVR-CCPSO模型用于港口吞吐量的预测。预测过程中,用主成分分析法和相关性分析法确定预测模型的输入向量,设计算例对模型的可行性和有效性进行了验证。
  3)为使船舶在靠泊时尽可能靠近偏好泊位,缩短集卡运距,减少船舶在港时间,以船舶未按偏好泊位靠泊而产生的平均集卡运距和船舶平均在港时间最小为优化目标,建立了多目标离散泊位-岸桥分配模型。
  4)利用CCPSO算法求解建立的离散泊位-岸桥分配模型,开发了粒子可行-整数化处理模块,制定了粒子编码规则,确定了基于多目标函数的粒子历史极值和全局极值的计算方法,设计了用于泊位-岸桥分配模型求解的Cat映射全局扰动和云模型局部搜索策略,获得了基于CCPSO算法求解的多目标离散泊位-岸桥分配的新方法。根据集装箱码头船舶到达统计规律和码头装卸设备的技术参数设计实验算例,验证建立模型和求解算法的可行性和有效性。
作者: 李明伟
专业: 港口、海岸及近海工程
导师: 康海贵;周鹏飞
授予学位: 博士
授予学位单位: 大连理工大学
学位年度: 2013
正文语种: 中文
检索历史
应用推荐