摘要: |
随着城市交通管理现代化水平的提高,建立在车辆牌照识别基础上的交通信号白适应控制系统、智能交通监控系统、GPS车辆管理及导航系统、停车场自动收费系统、智能化交通管理系统应用而生。由于汽车牌照是机动车辆管理的主要标志符号之一,因此对车辆牌照识别系统的研究就尤为重要,该研究的核心是提高车牌识别率,这就需要识别算法能够对环境光照条件,拍摄位置和车辆行驶速度等因素的影响有较大的鲁棒性,并能够满足实时性的要求。
本文设计的主要研究内容包括:运用仿真软件对后台图像进行高速,准确的处理。主要工作是对牌照的定位、分割和牌照的字符识别算法方面进行了深入地研究。在牌照的定位之前,本文首先运用不同于当下传统的方法,而是结合当前比较热门的神经网络来对图像进行预处理,得到了比较突出的牌照信息。然后结合牌照自身的一些固有特征,用形态学的方法进行了车牌区域的准确定位;对定位得到的车牌,再次结合牌照内部细节特征,对车牌进行投影,从而得到了车牌较为完整的分割;最后在车牌字符识别阶段,以现今比较流行的神经网络为理论基础,有效的设计出一个改进的神经网络识别算法。仿真结果表明采用本文提出的从车牌定位、分割到最后字符识别的算法能够有效地提高车牌识别率。
本文研究内容的创新性体现在以下三个方面:(1)车牌定位阶段,采用一个改进的自适应PCNN神经网络对图像进行预处理可以得到一个细节丰富,边缘完整的二值图像,随后基于牌照固有特征,结合一种新的形态学方法,可以得到多个车牌候选区域;(2)车牌字符分割阶段,为了满足算法实时性的要求,对畸变车牌进行预处理时,采用字符的行特征来描述本文的倾斜校正算法,之后,基于改进的投影特征图对字符图像分割;(3)字符识别阶段,为了提高算法的识别率,采用改进的BP神经网络。
仿真结果表明,通过对算法进行一系列的创新和改进,可以使识别算法的速度加快,识别率得到提高,效果比较理想。
|