摘要: |
驱动桥桥壳是汽车上重要的承载件和传力件,作为具有广泛应用市场的非断开式驱动桥的桥壳不仅支承汽车重量,将载荷传递给车轮,而且还承受由驱动车轮传递过来的牵引力、制动力、侧向力、垂向力的反力以及反力矩,并经悬架传给车架或车身。并且在汽车行驶过程中,由于道路条件的千变万化,桥壳受到车轮与地面间产生的冲击载荷的影响,可能引起桥壳变形或折断。因此,驱动桥壳应具有足够的强度、刚度和良好的动态特性,合理地设计驱动桥壳也是提高汽车平顺性的重要措施。
随着公路状况的改善,特别是高速公路的迅猛发展,重型汽车使用条件对汽车通过性的要求降低,由于与带轮边减速器的驱动桥相比,单级减速驱动桥机械传动效率提高,易损件减少,可靠性增加,结构简单。因此,未来重型车车桥将由典型的斯太尔双级减速驱动桥向单级桥方向发展。本文正是以新型的10T级的单级减速驱动桥的桥壳为研究对象。
本文的重点是:以有限元静态分析、动态分析及机械结构优化设计理论为基础,将CAD软件UG和有限元分析软件ANSYS结合起来,完成了从驱动桥壳三维建模到有限元分析的整个过程,得出了驱动桥壳在四种典型工况下的应力分布和变形结果及它在自由约束状态的前16阶固有频率和振型,计算证明,该桥壳满足强度要求,可以认为它在汽车各种行驶条件下是可靠的,并且不会引起共振。在此基础上,应用ANSYS的优化模块对其进行结构优化,优化结果表明,桥壳质量有了明显的减少,最大等效应力接近许用应力,大大提高了材料的利用率,且应力分布更加合理。其中,本文总结了使用以上软件建立模型及有关分析和优化工况的规范化步骤,以达到提高工作效率的目的,得到了有益于工程实际的结论。
研究结果表明,利用CAD建模技术和CAE分析技术可以显著提高汽车驱动桥桥壳的设计水平、缩短设计周期、降低开发成本并提高产品竞争力。该方法具有普遍性,可以为其他类型的驱动桥桥壳的设计和分析提供借鉴和参考。
|