Implementing Waste Plastics in Asphalt Pavement for Both Engineering and Environmental Benefits
项目名称: Implementing Waste Plastics in Asphalt Pavement for Both Engineering and Environmental Benefits
摘要: Objectives and Scope of Work The objective of this study is to explore and investigate the application methods of using RPW in asphalt mixture with both engineering and environmental benefits. Both wet and dry methods will be considered with easily accessible post-consumer recycled plastic waste materials. One base binder PG64-22 will be used to develop RPW modified binders and mixtures. It will also be used to prepare an SBS polymer modified binder as control to be compared with the various RPW modified asphalt materials. Significance and Potential Impact on the State of Practice Plastic waste has long been identified as a primary source of environmental pollution. Producing and decomposing one ton of plastic from virgin sources is accompanied by huge carbon and non-methyl volatile organic compound emissions, and the non-biodegradable nature of PW can last for 500 years without fully decomposing, polluting water bodies and damaging the aesthetics of cities. Currently, the global plastic waste generation exceeds 300 million tons annually and is increasing at a rate of 4% per year [3]. The need of seeking for alternatives to use waste plastics is more urgent in recent years as China has banned importing waste plastics, followed by India [26]. The success of this study will identify a positive and massive way of implementing/reusing the RPW in pavement engineering, and meanwhile, add another alternative to the very expensive polymer additives for improving performance of asphalt mixtures. Although some studies on RPW modified asphalt binder and mixture have been conducted nationally and internationally, this technology is far from mature and practical application. Various stakeholders including but not limited to waste plastics industry, asphalt industry, paving contractors, and state/local agencies are all anxious to know whether and how this technology can be appropriately implemented for best engineering and environmental benefits. Through verbal communication, paving companies are strongly supportive to conduct a pilot paving project based on promising experimental results.
状态: Active
资金: PSUAlt $97,184/$97,282 VTI$91,712/$92,321
资助组织: Federal Highway Administration
项目负责人: Donnell, Eric T
执行机构: Pennsylvania State University, University Park<==>Virginia Tech Transportation Institute
开始时间: 20210308
预计完成日期: 20230307
主题领域: Research
检索历史
应用推荐