摘要: |
现代车辆,特别像货车、工程车辆和军用战车等车辆,由于其自身车辆悬架性能相对较差以及运行路况恶劣,在运行时会产生激烈的振动,使得这些车辆的驾驶者长时间承受低频高强度的乘坐振动,容易引发脊椎畸变和胃病等职业性疾病,严重损害司机的身心健康,大大降低工作效率。因此,研究座椅悬架系统,采用切实可行的技术措施,隔离由于地面激励引起的通过底盘和座椅传动到人体的振动,是改善这些车辆乘坐舒适性的一个重要途径。而国内对高性能的车辆座椅悬架的研究较少,因此研究结构简单高性能的座椅悬架是十分必要的。
本文提出的座椅悬架,旨在提高司机的驾驶和乘坐舒适性。本研究结合教育部立项的“列车车辆主动隔振及预见控制研究”和“列车主动悬挂系统及智能模糊控制研究”,建立了车辆座椅悬架系统动力学模型及数学模型,并借助MATLAB软件对基于最优控制策略和鲁棒控制策略的整个机电系统进行了仿真研究,大量的仿真研究表明:鲁棒控制策略能使车辆座椅半主动悬架系统较好抑制垂直振动加速度,在共振频率附近其减振幅度能达到40﹪~50﹪,大大了提高乘坐的舒适性。最后在仿真研究的基础上,设计和建造了磁流变阻尼器的特性实验平台,进行了关键部件——磁流变阻尼器的特性实验研究,为将来对整个系统进行实验做了必不可少的前期准备。
本文研究的主要内容如下:
1.建立了四自由度的“车-椅-人”系统的动力学和数学模型。
2.为车辆座椅半主动悬架设计了最优控制器,并运用MATLAB软件进行了仿真分析。
3.采用H∞鲁棒控制策略为车辆座椅半主动悬架设计了鲁棒控制器,并运用MATLAB对座椅悬架系统进行了仿真分析,并与最优控制器的控制效果进行了对比。
4.设计了磁流变阻尼器实验台架并进行了其特性实验研究。 |