Integrated Optimization of Vehicle Speed Control and Traffic Signal Timing: System Development and Testing
项目名称: Integrated Optimization of Vehicle Speed Control and Traffic Signal Timing: System Development and Testing
摘要: The research develops an integrated optimal control system to improve the transportation system efficiency and fuel economy on arterial roads by simultaneously optimizing vehicle speeds and traffic signal timings. The proposed approach entails designing two integrated control systems for connected automated vehicles (CAVs) and connected vehicles (CVs), which will be tested in a microscopic traffic simulation software and a driving simulator, respectively. Given that the existing methods are generally complicated, involving high computational cost, the team will start by developing a simple dual-optimization approach and use heuristic algorithms to locate an approximate optimum solution ensuring expedited computations. Meanwhile, the proposed approach will be developed to ensure it can be easily extended from internal combustion vehicles (ICEVs) to other vehicle types such as hybrid electric vehicles (HEVs) or battery electric vehicles (BEVs). Thereafter, the CAV and traffic signal control system will be implemented in a microscopic traffic simulation software so that the system is evaluated in mixed traffic (CAVs and non-CAVs). A simulated traffic network composed of multiple signalized intersections will be used to quantify the system-wide impacts of the proposed CAV/traffic signal control system on traffic mobility, energy consumption and emission levels for various traffic demand and market penetration levels. Lastly, the team will consider the impacts of human errors and perception reaction times (PRTs) when implementing the CV control system in a driving simulator at MSU. The simulator test will be conducted by participants to compare the proposed dual-optimization CV control system with two other scenarios -- adaptive traffic signal control and an eco-driving system previously developed to optimize vehicle trajectories. It is anticipated that the proposed systems will improve the mobility of arterial traffic by reducing delays, energy consumption and vehicle emissions, which are typically higher in low income areas.
状态: Active
资金: 180385
资助组织: Office of the Assistant Secretary for Research and Technology
执行机构: Virginia Polytechnic Institute and State University, Blacksburg<==>Morgan State University
开始时间: 20210101
预计完成日期: 20211231
主题领域: Highways;Operations and Traffic Management;Vehicles and Equipment
检索历史
应用推荐