摘要: |
该文以岸桥-集卡-轮胎式龙门吊装卸工艺的集装箱码头为研究对象,充分考虑了集装箱码头调度问题的动态性、不确定性和复杂性,通过理论分析和应用研究相结合的方法对面向不确定环境的集装箱码头调度问题的基础理论、应用模型和求解算法进行了较为系统地研究。论文涉及管理学、运筹学、港口规划、信息科学等相关学科,对提高集装箱码头企业自身的竞争力、增加企业收益和客户满意度具有重要的现实意义和理论价值。 该文的主要研究内容:
1.以面向不确定环境的集装箱码头优化调度研究为背景,针对当前不确定性测度问题可加性和完备性刻画不足的现状,提出了一种能够刻画不确定性因素可加性和完备性的未确定规划方法。在未确定规划三个公理化假设的基础上,界定了未确定测度空间、未确定乘积测度空间、未确定变量、未确定变量的分布函数和分布密度函数、未确定变量的独立性、期望值算子等概念,并对其性质及联合未确定分布函数的确定进行了分析和论证,同时讨论了未确定变量模拟方法。较全面地分析了面向不确定环境的集装箱码头优化调度的方案选择和集装箱码头调度问题中不确定性因素的处理方法,讨论了集装箱码头调度常用的未确定规划模型包括:期望值模型、机会约束规划、机会相关规划,同时提出模型中未确定函数的神经网络模拟方法,并给出未确定规划模型的混合智能求解算法。该方法虽然是针对集装箱码头优化调度问题提出的,但对其他面向不确定环境的规划问题同样适用。
2.在对集装箱泊位-岸桥分配和调度问题分析的基础上,基于机会约束的未确定规划的思想建立了集装箱泊位岸桥分配模型。根据模型最优解的特征,设计了求解模型的集束搜索算法和遗传算法。将遗传算法与神经网络结合,并用神经网络模拟未确定函数,实现了求解该问题的混合智能算法。
3.根据堆场管理的要求将堆场箱位分配问题分解为堆场区段分配和区段内具体箱位确定两部分。根据堆场区段的分配标准分别建立了以平衡堆场段间计划作业量为目标的堆场区段分配未确定期望值模型Ⅰ,以同组箱同区段摆放和堆场区段距相应泊位较近为目标的堆场区段分配未确定期望值模型Ⅱ。建立了区段内具体箱位分配的未确定机会相关规划模型。提出了基于未确定变量机会相关的集装箱堆场进、出口箱的翻箱量计算方法,进而建立了以同组进、出口箱靠近摆放和翻箱量最小为目标的0-1规划模型。基于模型最优解特征设计了求解模型的近似启发式算法。
4.在对岸桥-堆场龙门吊-集卡作业流程分析的基础上,将岸桥-堆场龙门吊-集卡的作业调度问题分为龙门吊在堆场段间的分配和岸桥-龙门吊-集卡的作业序列优化两个子问题。建立了面向不确定环境的龙门吊堆场段间调度的未确定期望值规划模型,合理地在堆场段间调度龙门吊可以使规划时段结束时各堆场段未完成的作业量最少,设计了求解模型的集束搜索算法。基于未确定规划理论对岸桥-龙门吊-集卡作业序列优化问题进行研究,建立了反映决策者风险偏好和经验的机会约束规划模型。鉴于模型的复杂性,设计了遗传算法和集束搜索算法分别对其进行求解,对机会相关函数采用直接简化和神经网络模拟两种方法进行了处理。
5.集装箱码头系统是一个动态协调的作业系统。Multi-agent系统设计和开发的柔性、鲁棒性、动态性、同步性等特性是实现集装箱码头协同调度所必需的。同时,通过多Agent间的协作能提高系统的整体性能,多Agent合作还可以克服单Agent知识不完全和信息缺乏的不足。因此,为了实现集装箱码头动态、协调、整体的优化调度,降低不确定性的干扰,该文设计了基于未确定规划的集装箱码头分布式智能调度Multi-agent系统,并对系统中Agent的选取、MAS的体系结构、Agent间的通信、冲突和协调机制等关键性问题进行了研究,并利用C#语言开发了模拟试验系统。 |