摘要: |
This research project resulted in a new, accurate way to assess fatigue cracking on Bridge 9340 on I-35, which crosses the Mississippi River near downtown Minneapolis. The research involved installation on both the main trusses and the floor truss to measure the live-load stress ranges. Researchers monitored the strain gages while trucks with known axle weights crossed the bridge under normal traffic. Researchers then developed two- and three-dimensional finite-element models of the bridge, and used the models to calculate the stress ranges throughout the deck truss. The bridge's deck truss has not experienced fatigue cracking, but it has many poor fatigue details on the main truss and floor truss system. The research helped determine that the fatigue cracking of the deck truss is not likely, which means that the bridge should not have any problems with fatigue cracking in the foreseeable future. As a result, the Minnesota Department of Transportation (Mn/DOT) does not need to prematurely replace this bridge because of fatigue cracking, avoiding the high costs associated with such a large project. The research also has implications for other bridges. The project verified that the use of strain gages at key locations combined with detailed analysis help predict the bridge's behavior. In addition, the instrumentation plan can be used in other similar bridges. |