当前位置: 首页> 交通中文期刊数据库 >详情
原文传递 融合XGBoost和图谱修正的公交通勤乘客目的地预测方法
题名: 融合XGBoost和图谱修正的公交通勤乘客目的地预测方法
作者: 梁泉;翁剑成;胡娟娟;韩冰
作者单位: 交通运输部管理干部学院道路教研部;北京工业大学
关键词: 城市交通;公交通勤乘客;目的地预测;XGBoost算法;出行图谱
摘要: 准确把握公共交通通勤乘客的目的地,有助于明确乘客出行需求,提升公共交通服务水平。基于北京市1个月的公共交通出行数据和RP调查数据,通过关联分析乘客公交卡号与公共交通刷卡数据和线站数据,匹配获得563名通勤乘客完整出行链数据,并利用关联规则实现302名公交通勤乘客高、中、低出行稳定性辨识。引入XGBoost集成学习算法,分别以不同公交出行稳定性乘客出行目的地显著影响因素为输入变量,以下次出行目的地为输出变量,通过模型参数调优,分类构建了公共交通通勤个体乘客下次出行目的地预测模型,髙冲、低稳定性乘客出行目的地预测准确率分别为90%,66.67%和50%。借助个体乘客出行图谱转移概率对模型预测结果进行修正,将预测准确率分别提升至91.2%,83.21%和69.5%,可以有效提升中、低稳定性乘客出行目的地的预测准确性。采用公交都市系统记录的目的地数据对下次出行目的地预测聚合结果进行对比验证,客流预测值与真值变化梯度的绝对百分误差小于10%。因此,在划分通勤乘客出行稳定性的基础上,融合XGBoost和图谱修正的公交通勤乘客目的地预测预测方法具有较高准确性。
期刊名称: 交通信息与安全
出版年: 2021
期: 04
页码: 68-76
检索历史
应用推荐