当前位置: 首页> 国外交通期刊数据库 >详情
原文传递 Multistep Traffic Speed Prediction from Spatial-Temporal Dependencies Using Graph Neural Networks
题名: Multistep Traffic Speed Prediction from Spatial-Temporal Dependencies Using Graph Neural Networks
正文语种: eng
作者: Wu, Xuesong;Fang, Jie;Liu, Zhijia;Wu, Xiongwei
作者单位: Fuzhou Univ Coll Civil Engn Fuzhou 350108 Peoples R China;Fuzhou Univ Coll Civil Engn Fuzhou 350108 Peoples R China;Fuzhou Univ Coll Civil Engn Fuzhou 350108 Peoples R China;Fuzhou Univ Coll Civil Engn Fuzhou 350108 Peoples R China
关键词: Traffic speed prediction;Deep learning;Graph convolution;Attention mechanism
摘要: Accurate traffic forecasting on citywide networks is one of the crucial urban data mining applications that accurately provide congestion warning and transportation scheduling. While previous work has made significant efforts to learn traffic temporal dyn
出版年: 2021
期刊名称: Journal of Transportation Engineering
卷: 147
期: 12
页码: 04021082.1-04021082.12
检索历史
应用推荐